Bottom Spectroscopy at CDF

, Calancha (CIEMAT, SPAIN For the CDF Collaboration

XII International Conference on Meson-Nucleon Physics and the Structure of the Nucleon June 2nd 2010

C. Calancha (CIEMAT)

v Tecnológiog

Outline

Motivation

- Review on heavy hadrons spectroscopy during CDF Run II
- Latest results
 - Evidence of Y(4140)
 - Observation of Ξ⁻_b and Ω⁻_b
 - Polarization of ↑(1S)
- Conclusion

Fermilab Tevatron Run II

Collider Run II Integrated Luminosity

HAD cal HAD

- Delivered luminosity: $\sim 8~\text{fb}^{-1}$
- Acquired luminosity: $\sim 7~\text{fb}^{-1}$
- CDF has excellent vertex and momentum resolution

This talk: analysis covering up to 4.2 fb⁻¹

Heavy Spectroscopy

Heavy Spectroscopy it is important:

- The study of heavy spectroscopy increases our knowledge on QCD.
 - study of B hadrons = study of (non-perturbative) QCD
- Heavy quark hadrons are the hydrogen atom of QCD

Tevatron is a suitable place to study bottom spectroscopy

- All *B* hadrons are copiously produced.
 - Some states are not accessible to B factories.
- They are produced boosted
 - separation between produced and decay *B* hadron vertex is measurable.
 - low p_T daughters are tracked.
- CDF has a strong program on heavy hadron spectroscopy that yielded many key results.

Heavy **B** Hadrons

Until 2006 $\Lambda_b^0 = |bdu\rangle$ was only established *B* baryon => Search for $\sum_b^- = |bdd\rangle$ $\Xi_b^- = |bds\rangle, \Omega_b^- = |bss\rangle$

Total spin:1/2 (X_b) or 3/2 (X_b^*): $b\{qq\}, q = u, d, s; J^P = S_Q + s_{qq}$

- Σ_b^{\pm} and $\Sigma_b^{*\pm}$ discovered in 2007
- Ξ_b^- discovered in 2007
- Ω_b^- discovered in 2008

Review on CDF Charm and Bottom Results

Observed by CDF in 2007:

(Phys.Rev.Lett.99:202001,2007) $\Sigma_b^{*\pm} \rightarrow \Lambda_b^0 \pi^{\pm}$

$$(\Lambda^0_b
ightarrow \Lambda^+_c \pi^-, \Lambda^+_c
ightarrow PK^- \pi^+)$$

Signals with $> 5\sigma$ significance

State	Yield	Q or $\Delta_{\Sigma_b^*}$ (MeV/c ²)	Mass (MeV/c ²)
Σ_b^+	32^{+12+5}_{-12-3}	$Q_{\Sigma_b^+} = 48.5^{+2.0+0.2}_{-2.2-0.3}$	$5807.8^{+2.0}_{-2.2}\pm1.7$
Σ_b^-	59^{+15+9}_{-14-4}	$Q_{\Sigma_{h}^{-}} = 55.9 \pm 1.0 \pm 0.2$	$5815.2 \pm 1.0 \pm 1.7$
Σ_b^{*+}	77^{+17+10}_{-16-6}	$\Delta_{\Sigma_b^*} = 21.2^{2.0+0.4}_{-1.9-0.3}$	$5829.0^{+1.6+1.7}_{-1.8-1.8}$
Σ_b^{*-}	69^{+18+16}_{-17-5}	-	$5836.4 \pm 2.0^{+1.8}_{-1.7}$

 $\rightarrow J/\psi \pi^{\pm}$

 $m = 6275.6 \pm 2.9 (stat) \pm 2.5 (syst) \text{ MeV/c}^2$ (Phys.Rev.Lett.100:182002,2008)

Theoretical expectations:

- non-relativistic potential models: 6247 6286 MeV/c²
- lattice QCD: $6304 \pm 12^{+18}_{-0}$ MeV/c²

 $X(3872) \rightarrow J/\psi \pi^+ \pi^-$

• $m(X(3872)) = 3871.61 \pm 0.16(stat) \pm 0.19(syst) \text{ MeV/c}^2$ (more precise measurement)

• Angular analysis $\rightarrow J^{PC} = 1^{++}$ or 2^{-+} only assumptions compatible with data

 $B^{**}_{ extsf{s}} o B^+ \overline{K^-}$

(Phys.Rev.Lett.100:082001,2008)

1.0 fb⁻¹

B⁺K⁺

Signal

0.15

0.20

Background

• $m(B_{s1}) = 5829.41 \pm 0.21(stat) \pm 0.14(syst) \pm 0.6(PDG) \text{ MeV/c}^2$ • $m(B_{s2}^*) = 5839.64 \pm 0.39 \text{ (stat)} \pm 0.14 \text{ (syst)} \pm 0.5 \text{ (PDG)} \text{ MeV/c}^2$ (first observation of B_{s1})

Latest Results

- Since the discovery of *X*(3872) more exotic mesons with charmonium-like decay modes have been observed.
- The possible interpretations beyond standard quark model such as hybrid $(q\bar{q}g)$ and four-quark states $(q\bar{q}q\bar{q})$ motivates the interest in exotic mesons in the charm sector.
- The observation of Y(3930) near the $J/\psi \Omega^-$ threshold motivates searches for similar phenomena near the $J/\psi \phi$ threshold.

Evidence for $Y(4140) \rightarrow J/\psi \Phi$

$$B^+ \rightarrow Y(4140)K^+; Y(4140) \rightarrow J/\psi \Phi$$

 $(J/\psi \rightarrow \mu^+\mu^-; \Phi \rightarrow K^+K^-)$

- $m = 4143.0 \pm 2.9 \text{ (stat)} \pm 1.2 \text{ (syst) MeV/c}^2$ $\Gamma = 11.7^{+8.3}_{-5.0} \text{ (stat)} \pm 3.7 \text{ (syst) MeV/c}^2$
- statistical significance 3.8 σ

(Phys.Rev.Lett.102:242002,2009)

Ξ_b^- And Ω_b^- analysis Strategy

•
$$\Xi_b^- \rightarrow J/\psi \Xi^-$$

 $(J/\psi \rightarrow \mu^+ \mu^-, \Xi^- \rightarrow \Lambda \pi^-)$

- $\Omega_b^- \to J/\psi \Omega^ (J/\psi \to \mu^+\mu^-, \Omega^- \to \Lambda K^-)$
- Ξ^- and Ω^- long lived & charged ($c\tau(\Xi^-) \approx 5 \text{ cm}, c\tau(\Omega^-) \approx 2.5 \text{ cm}$)
 - They are tracked in the silicon vertex detector
 - This improve significanly the purity of the samples.
- Likelihood method to extract mass, yield and significance:

$$\mathcal{L} = \prod_{i}^{N} (f_{s}G(m_{i}, m_{0}, s_{m}\sigma_{i}^{m}) + (1 - f_{s})P^{n}(m_{i}))$$

 $\Xi_{b}^{-} |bds\rangle$

M(Ξ_b⁻) = 5790.9 ± 2.6(stat) ± 0.8(syst) MeV/c² (Phys.Rev.D80,072003,2009)

Consistent with theory:
 5790 - 5814 MeV/c²

• lifetime measurement: $\tau(\Xi_b^-) = 1.56^{+0.27}_{-0.25} \pm 0.02 \text{ ps}$ (first exclusive Ξ_b^- lifetime)

 $\Omega_b^- \ket{bss}$

CDF observed Ω_{b}^{-} in 2009 (Phys.Rev.D80,072003,2009)

- $m(\Omega_b^-) = 6054.4 \pm 6.8(stat) \pm 0.9(syst) \text{ MeV/c}^2$
- $\tau(\Omega_b^-) = 1.13^{+0.53}_{-0.40} \pm 0.8$ ps (first time)

Consistent with theory:

• theory expect: $6010 - 6070 \text{ MeV/c}^2$

Ω_b^- Discrepancy DØ - CDF

 Ω_b^- first observation by DØ : 6165 ± 10 (*stat*)±13 (*syst*) MeV/c² (Phys. Rev. Lett. 101, 232002, 2008)

6σ disagreement with CDF!

• $\Delta m = (111 \pm 12 \pm 14) \text{ MeV/c}^2$

Discrepancy also in Ω_b^- production rate:

• DØ
$$\frac{f(b \rightarrow \Omega_b^-)\mathcal{B}(\Omega_b^- \rightarrow J/\psi \, \Omega^-)}{f(b \rightarrow \Xi_b^-)\mathcal{B}(\Xi_b^- \rightarrow J/\psi \, \Xi^-)} = 0.80 \pm 0.32^{+0.14}_{-0.22}$$

• CDF:
$$\frac{\sigma \mathcal{B}(\Omega_b^- \to J/\psi \Omega^-)}{\sigma \mathcal{B}(\Xi_b^- \to J/\psi \Xi^-)} = 0.27 \pm 0.12 \pm 0.01$$

 \rightarrow DØ working on an update of Ω_b^- with more data

- Vector meson production and polarization is discussed within the framework of non-relativistic QCD.
- Theory predicts the vector meson polarization become transverse in the perturbative regime (at large p_T)
 - Recent CDF measurements of polarization for J/ψ and $\psi(2S)$ do not support this prediction.
- It is helpfull for our understanding test if ↑(1S) also is in disagreement with the theoretical predictions.

$\Upsilon(1S)$ Polarization

- |y| < 0.6
- $2 < p_T(\Upsilon(1S)) < 40 \text{ GeV/c}$

- $\frac{d\Gamma}{d\cos\theta^*} \propto 1 + \alpha\cos^2\theta^*$
- $\alpha = +1 \rightarrow$ fully transverse
- $\alpha = -1 \rightarrow$ fully longitudinal
- \rightarrow NRQCD expect transversal polarization at high p_T \rightarrow CDF observe longitunidal polarization at high p_T
- θ^* is the angle between μ^+ and $\Upsilon(1S)$ lab direction in $\Upsilon(1S)$ rest frame.

Conclusions

C. Calancha (CIEMAT)

MENU2010

Conclusions

- Very rich heavy flavour program at CDF
- Many results on properties of heavy B hadrons:
 - Heavy baryons Σ[±]_b, Σ^{*±}_b, Ξ⁻_b established
 - Ω_b^- observation
 - $\Upsilon(1S)$ polarization
- CDF will keep as a reference in the study of heavy hadrons next years
 - CDF accumulates more data until end of Run II

Back Up

$\Xi_b^- |bds\rangle$ Comparison DØ - CDF

CDF:

$$\frac{\sigma(\Xi_{b}^{-})\mathcal{B}(\Xi_{b}^{-}\to J/\psi\Xi^{-})}{\sigma(\Lambda_{b}^{0})\mathcal{B}(\Lambda_{b}^{0}\to J/\psi\Lambda)} = 0.167^{+0.037}_{-0.025} \pm 0.012B$$

$$\frac{\sigma(\Omega_{b}^{-})\mathcal{B}(\Omega_{b}^{-}\to J/\psi\Omega^{-})}{\sigma(\Lambda_{b}^{0})\mathcal{B}(\Lambda_{b}^{0}\to J/\psi\Lambda)} = 0.045^{+0.017}_{-0.012} \pm 0.004$$

DØ:

$$\frac{\sigma(\Xi_b^-)\mathcal{B}(\Xi_b^- \to J/\psi \Xi^-)}{\sigma(\Lambda_b^0)\mathcal{B}(\Lambda_b^0 \to J/\psi \Lambda)} = 0.28 \pm 0.09(stat)^{+0.09}_{-0.08}(syst)$$

CDF, DØ results and theoretical prediction are consistent

CDF Detector

- Excellent momentum resolution
- particle ID (TOF & dE/dx)
- Displaced track trigger and di-muon triggers